skip to main content


Search for: All records

Creators/Authors contains: "Goulding, Andy D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Drawing from the Chandra archive and using a carefully selected set of nearby dwarf galaxies, we present a calibrated high-mass X-ray binary (HMXB) luminosity function in the low-mass galaxy regime and search for an already hinted at dependence on metallicity. Our study introduces a new sample of local dwarf galaxies (D< 12.5 Mpc andM*< 5 × 109M), expanding the specific star formation rates (sSFR) and gas-phase metallicities probed in previous investigations. Our analysis of the observed X-ray luminosity function indicates a shallower power-law slope for the dwarf galaxy HMXB population. In our study, we focus on dwarf galaxies that are more representative in terms of sSFR compared to prior work. In this regime, the HMXB luminosity function exhibits significant stochastic sampling at high luminosities. This likely accounts for the pronounced scatter observed in the galaxy-integrated HMXB population’sLX/SFR versus metallicity for our galaxy sample. Our calibration is necessary to understand the active galactic nuclei content of low-mass galaxies identified in current and future X-ray survey fields and has implications for binary population synthesis models, as well as X-ray-driven cosmic heating in the early Universe.

     
    more » « less
  2. Abstract

    We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and are fainter, redder, and more numerous, ∼340 AGN deg−2, than comparable photometric and spectroscopic samples. In this work, we obtain 178 rest-optical spectra from two candidate ML-identified AGN classes with the Hectospec spectrograph on the MMT Observatory. We find that our first ML-identified group is dominated by Type I AGNs (85%) with a <3% contamination rate from non-AGNs. Our second ML-identified group is mostly comprised of Type II AGNs (65%), with a moderate contamination rate of 15% primarily from star-forming galaxies. Our spectroscopic analyses suggest that the classes recover more obscured AGNs, confirming that ML techniques are effective at recovering large populations of AGNs at high levels of extinction. We demonstrate the efficacy of pairing existing WISE data with large-area and deep optical/near-infrared photometric surveys to select large populations of AGNs and recover obscured growth of supermassive black holes. This approach is well suited to upcoming photometric surveys, such as Euclid, Rubin, and Roman.

     
    more » « less
  3. Abstract

    The recent Chandra-JWST discovery of a quasar in thez≈ 10.1 galaxy UHZ1 reveals that accreting supermassive black holes were already in place 470 million years after the Big Bang. The Chandra X-ray source detected in UHZ1 is a Compton-thick quasar with a bolometric luminosity ofLbol∼ 5 × 1045erg s−1, which corresponds to an estimated black hole (BH) mass of ∼4 × 107M, assuming accretion at the Eddington rate. JWST NIRCAM and NIRSpec data yield a stellar mass estimate for UHZ1 comparable to its BH mass. These characteristics are in excellent agreement with prior theoretical predictions for a unique class of transient, high-redshift objects, overmassive black hole galaxies (OBGs) by Natarajan et al., that harbor a heavy initial black hole seed that likely formed from the direct collapse of the gas. Given the excellent agreement between the observed multiwavelength properties of UHZ1 and theoretical model template predictions, we suggest that UHZ1 is the first detected OBG candidate. Our assertion rests on multiple lines of concordant evidence between model predictions and the following observed properties of UHZ1: its X-ray detection and the estimated ratio of the X-ray flux to the IR flux, which is consistent with theoretical expectations for a heavy initial BH seed; its high measured redshift ofz≈ 10.1, as predicted for the transient OBG stage (9 <z< 12); the amplitude and shape of the detected JWST spectral energy distribution (SED) between 1 and 5μm, which is in very good agreement with simulated template SEDs for OBGs; and the extended JWST morphology of UHZ1, which is suggestive of a recent merge and is also expected for the formation of transient OBGs. As the first OBG candidate, UHZ1 provides compelling evidence for the formation of heavy initial seeds from direct collapse in the early Universe.

     
    more » « less
  4. Abstract

    Quantifying the connection between galaxies and their host dark matter halos has been key for testing cosmological models on various scales. BelowM∼ 109M, such studies have primarily relied on the satellite galaxy population orbiting the Milky Way (MW). Here we present new constraints on the connection between satellite galaxies and their host dark matter subhalos using the largest sample of satellite galaxies in the Local Volume (D≲ 12 Mpc) to date. We use 250 confirmed and 71 candidate dwarf satellites around 27 MW-like hosts from the Exploration of Local VolumE Satellites (ELVES) Survey and use the semianalyticalSatGenmodel for predicting the population of dark matter subhalos expected in the same volume. Through a Bayesian model comparison of the observed and the forward-modeled satellite stellar mass functions (SSMFs), we infer the satellite stellar-to-halo mass relation. We find that the observed SSMF is best reproduced when subhalos at the low-mass end are populated by a relation of the formMMpeakα, with a moderate slope ofαconst=2.10±0.01and a low scatter, constant as a function of the peak halo mass, ofσconst=0.060.05+0.07. A model with a steeper slope (αgrow= 2.39 ± 0.06) and a scatter that grows with decreasingMpeakis also consistent with the observed SSMF but is not required. Our new model for the satellite–subhalo connection, based on hundreds of Local Volume satellite galaxies, is in line with what was previously derived using only MW satellites.

     
    more » « less
  5. Abstract The James Webb Space Telescope (JWST) will have the sensitivity to detect early low-mass black holes (BHs) as they transition from “seeds” to supermassive BHs. Based on the JAGUAR mock catalog of galaxies, we present a clean color selection that takes advantage of the unique UV slope of accreting supermassive BHs with a relatively low mass and high accretion rates. We show that those galaxies hosting ∼10 6 M ⊙ BHs radiating at >10% of their Eddington luminosity separate in color space from inactive systems for a range of host stellar masses. Here we propose a set of 3-band, 2-color selection boxes (with 90% completeness; 90% purity; balanced purity/completeness) with JWST/NIRCam to identify the most promising growing BH candidates at z ∼ 7–10. 
    more » « less
  6. ABSTRACT

    At fixed galaxy stellar mass, there is a clear observational connection between structural asymmetry and offset from the star-forming main sequence, ΔSFMS. Herein, we use the TNG50 simulation to investigate the relative roles of major mergers (stellar mass ratios μ ≥ 0.25), minor (0.1 ≤ μ < 0.25), and mini mergers (0.01 ≤ μ < 0.1) in driving this connection amongst star-forming galaxies (SFGs). We use dust radiative transfer post-processing with SKIRT to make a large, public collection of synthetic Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) images of simulated IllustrisTNG (TNG) galaxies over 0.1 ≤ z ≤ 0.7 with log (M⋆/M⊙) ≥ 9 (∼750 k images). Using their instantaneous star formation rates (SFRs), known merger histories/forecasts, and HSC-SSP asymmetries, we show (1) that TNG50 SFGs qualitatively reproduce the observed trend between ΔSFMS and asymmetry and (2) a strikingly similar trend emerges between ΔSFMS and the time-to-coalescence for mini mergers. Controlling for redshift, stellar mass, environment, and gas fraction, we show that individual mini merger events yield small enhancements in SFRs and asymmetries that are sustained on long time-scales (at least ∼3 Gyr after coalescence, on average) – in contrast to major/minor merger remnants which peak at much greater amplitudes but are consistent with controls only ∼1 Gyr after coalescence. Integrating the boosts in SFRs and asymmetries driven by μ ≥ 0.01 mergers since z = 0.7 in TNG50 SFGs, we show that mini mergers are responsible for (i) 55 per cent of all merger-driven star formation and (ii) 70 per cent of merger-driven asymmetric structure. Due to their relative frequency and prolonged boost time-scales, mini mergers dominate over their minor and major counterparts in driving star formation and asymmetry in SFGs.

     
    more » « less
  7. Abstract

    High-accuracy black hole (BH) masses require excellent spatial resolution that is only achievable for galaxies within ∼100 Mpc using present-day technology. At larger distances, BH masses are often estimated with single-epoch scaling relations for active galactic nuclei. This method requires only luminosity and the velocity dispersion of the broad-line region (BLR) to calculate a virial product, and an additional virial factor,f, to determine the BH mass. The accuracy of these single-epoch masses, however, is unknown, and there are few empirical constraints on the variance offbetween objects. We attempt to calibrate single-epoch BH masses using spectropolarimetric measurements of nine megamaser galaxies from which we measure the velocity distribution of the BLR. We do not find strong evidence for a correlation between the virial products used for single-epoch masses and dynamical mass, either for the megamaser sample alone or when it is combined with dynamical masses from reverberation mapping modeling. Furthermore, we find evidence that the virial parameterfvaries between objects, but we do not find strong evidence for a correlation with other observable parameters such as luminosity or broad-line width. Although we cannot definitively rule out the existence of any correlation between dynamical mass and virial product, we find tension between the allowedf-values for masers and those widely used in the literature. We conclude that the single-epoch method requires further investigation if it is to be used successfully to infer BH masses.

     
    more » « less
  8. Abstract

    The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshiftsz≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hαwith a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz> 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allzphot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M. While their UV luminosities (−16 >MUV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109Mblack holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth.

     
    more » « less
  9. Abstract

    We present visual classifications of merger-induced tidal disturbances in 143M*∼ 1011Mpost-starburst galaxies atz∼ 0.7 identified in theSQuIGGLESample. This sample spectroscopically selects galaxies from the Sloan Digital Sky Survey that have stopped their primary epoch of star formation within the past ∼500 Myr. Visual classifications are performed on Hyper Suprime-Cam imaging. We compare to a control sample of mass- and redshift-matched star-forming and quiescent galaxies from the Large Early Galaxy Census and find that post-starburst galaxies are more likely to be classified as disturbed than either category. This corresponds to a factor of3.61.3+2.9times the disturbance rate of older quiescent galaxies and2.1.73+1.9times the disturbance rate of star-forming galaxies. Assuming tidal features persist for ≲500 Myr, this suggests merging is coincident with quenching in a significant fraction of these post-starbursts. Galaxies with tidal disturbances are younger on average than undisturbed post-starburst galaxies in our sample, suggesting tidal features from a major merger may have faded over time. This may be exacerbated by the fact that, on average, the undisturbed subset is fainter, rendering low-surface-brightness tidal features harder to identify. However, the presence of 10 young (≲150 Myr since quenching) undisturbed galaxies suggests that major mergers are not the only fast physical mechanism that shut down the primary epoch of star formation in massive galaxies at intermediate redshift.

     
    more » « less
  10. ABSTRACT

    We present the results of a search for high-redshift (z > 9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in seven bands over ∼45 arcmin2 and ancillary Hubble Space Telescope (HST) observations. The NIRCam observations reach a 5σ limiting magnitude of ∼29.2 AB. The identification of high-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9 < z < 12 and three candidates at 12 < z < 13, eight candidates are deemed very robust. Their lensing amplification ranges from μ = 1.2 to 11.5. Candidates have a wide range of (lensing corrected) luminosities and young ages, with low stellar masses [6.8 < log(M⋆/M⊙) < 9.5] and low star formation rates (SFR = 0.2–7 M⊙ yr−1), confirming previous findings in early JWST observations of z > 9. A few galaxies at z ∼ 9−10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β = −1.8 and −2.3, typical for early galaxies at z > 9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.

     
    more » « less